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Abstract: Abstract: For transparency and accurate cost 
identification, ancillary services including reactive power supply are 
unbundled in a deregulated power system .Reactive power providers 
receives the revenue collected from consumers. Due to increasing 
demand in availability of reactive power, an appropriate and 
transparent reactive power pricing scheme will encourage more 
generators to participate in reactive power market. Here a circuit 
theory based method is applied which identifies different reactive 
power sources and allocates the amount of reactive power provided 
to different sources by using an improved Y-bus technique along with 
proportional or equal sharing principle. Computer tests are 
conducted using the IEEE 6 and 30-bus system and the results show 
that the applied method is reasonable and practical. 
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1. INTRODUCTION  

The major trend in the power industry reform throughout the 
world is Liberalization. The transmission system is open to 
access by all power market participants, with the independent 
system operator (ISO) in charge of system dispatch and 
operation. To keep the system running normally, some 
ancillary services either purchased by contract or from a 
bidding market are needed. Certainly, the costs of these 
services should be shared by the users, and how to fairly 
allocate the costs becomes an important issue. The reactive 
power is confined to mainly local consumption, which will 
motivate the market to determine the actual value of each 
supply. A fair and adequate method for allocating the costs 
may help the market participants make appropriate and 
efficient investments of reactive power sources, which include 
static capacitors, flexible ac transmission system (FACTS) 
devices, and synchronous condensers. All of these can offer 
system operators more tools and can strengthen the system 
security. While focusing on the part of reactive power 
consumed by the loads, this paper applies a scheme to allocate 
the costs of reactive power supplied by generators, 
synchronous condensers, or capacitors. So far, the methods of 
allocating real power and reactive power cost may fall into 
three categories. The first is the tracing of the electricity flow 
[2]. By calculating the upstream distribution matrix; this 
approach can deduce the real or reactive power from 
individual generators received by each load. Next is the 

approach to ascertaining the contributions of generators to the 
power flow [3]. It simplifies the power system to state graphs 
and then uses recursive equations to solve the real and reactive 
power that each generator contributes to individual loads. The 
third is graph theory [4]. Contribution factors are calculated to 
determine the real or reactive power that each generator 
contributes to individual lines and loads. These methods have 
made some contributions to the modern power industry for 
system operation security, consumers’ pricing, and investment 
signals. This paper is not concerned about the aspect of the 
real power because bilateral transactions of the real power will 
take place after the liberalization of the power industry as 
effective power transactions will be performed by fixed buyers 
and fixed sellers. 

The rest of the manuscript is organized as follows. Section II 
gives an insight into the power-flow tracing. Section III gives 
the description on Proportional Sharing Principle and its 
associated algorithm-Downstream algorithm which is used to 
determine transmission loss allocation. The results of its 
application on IEEE 6 and 30-bus test system are shown in 
Section IV and finally, the last section presents conclusion. 

2. POWER TRACING 

It is very important to know the function of individual 
generators and loads to transmission lines and power transfer 
between individual generators to load in a power system. The 
power tracing methods helps to know the power transfer 
between individual generator to loads. Tracing methods 
determine the contribution of transmission user to 
transmission usage. It is also used for transmission pricing. 
The methods for tracing the power flow are upstream and 
downstream algorithms. This manuscript proposes a power-
flow tracing and loss allocation method based on the power-
flow results. The proposed method uses graph theoretic and 
proportional sharing based approaches. The method utilizes 
the branch-bus flow direction matrix and power-flow results. 
Thus, the prime strength of the method is its simplicity, which 
is one of the major requirements of power tracing and loss 
allocation tools. 
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3. DOWNSTREAM LOOKING ALGORITHM 

Now consider the dual, downstream-looking, problem when 
the nodal through-flow P, is expressed as the sum of outflows 

Lilii PPP    ||

 

Liilii PPCP    
 
where alpha(i)d is, as before, the set of nodes supplied directly 
from node i and  

llili PPC /|| 
 

 This equation can be rewritten as 

Liilii PPCP   

LD PPA 
 

Where Ad is the (n x n) downstream distribution matrix and P, 
is the vector of nodal demands. The (i.l) element of Ad is equal 
to  
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Note that A, is also sparse and non symmetric. Adding and 
gives a symmetric matrix which has the same structure as the 
nodal. Admittance matrix. If Ad

-1 exists then P= Ad
-1 PL and its 

ith element is equal to 

ikikli PAP ][
1  for i=1,2…..n 

This equation shows how the nodal power P, distributed 
between all the loads in the system. On the other hand, the 
same Pi is equal to the sum of the generation at node i and all 
the inflows in lines entering the node. Hence the inflow to 
node i from line i-j can be calculated using the proportional 
sharing principle as 

    ikikliliiilili PAPPPPPP ][/||/|||
1

 
 

LK
L
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Where LK
L

ji PkD ,   is the topological load distribution 

factor that is the portion of kth load demand that flows in line 
i-j.  

This definition is again similar to that of the generalized load 
distribution factor based on DC load-flow sensitivity analysis. 
However, the topological factor represents the share (which is 
always positive) of the load in a line flow while the 
generalized factor determines the impact of the load on a line 
flow and may be negative. The generation at a node is also an 
inflow and can be calculated using the proportional sharing 
principle as 

  ikikdiGiiiGiGi PAPPPPPP ][)/(/ 1 
 

This equation shows that the share of the output of the ith 
generator used to supply the kth load demand is equal to PGi 

PLK[Ad
-1]ik/ Pi and can be used to trace where the power of a 

particular generator goes to[1]. 

4. RESULTS AND DISCUSSIONS 

a) An application with IEEE 6 bus system 

To make the applied method easy to understand, a small test 
system was selected to explain the steps involved. The system 
data can be found in appendix. From the power-flow results, 
the direction of power flows through the lines can be 
determined. The reactive power-flow direction is indicated by 
the arrows placed under the branches 

 

Fig. 2: One line diagram of 3 Generator 6 bus system 

Three generators are connected to buses 1, 3 and 6. From the 
power-flow directions shown in the figure, it can be seen that 
only bus 1 is the start buses, as the buses get power from only 
the generator. All other generator buses, namely buses 3 and 6, 
do not get power only from the generators connected to that 
bus through the transmission lines. Bus 6 is only the bus 
where all of the connecting lines carry incoming power, and 
no line carries power out of this bus. So, bus 6 is the only end 
bus in this system. Although bus 2 is a load bus, it has an 
outward power carrying line connected with it, so this is not 
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circuit theory and therefore may have more acceptability than 
the intuition-based methods.  
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